skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jaoui, Rémi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, it is shown that if p is a complete type of Lascar rank at least 2, in the theory of differentially closed fields of characteristic zero, then there exists a pair of realisations a, b such that p has a nonalgebraic forking extension over a, b. Moreover, if A is contained in the field of constants then p already has a nonalgebraic forking extension over a. The results are also formulated in a more general setting. 
    more » « less
  2. Abstract We study the structure of the solution sets in universal differential fields of certain differential equations of order two, the Poizat equations, which are particular cases of Liénard equations. We give a necessary and sufficient condition for strong minimality for equations in this class and a complete classification of the algebraic relations for solutions of strongly minimal Poizat equations. We also give an analysis of the non-strongly minimal cases as well as applications concerning the Liouvillian and Pfaffian solutions of some Liénard equations. 
    more » « less